
The basis and perspectives of an exascale
algorithm: our ExaFMM project.

Lorena A Barba, Boston University

IMA Annual Program Year Workshop:
High Performance Computing and Emerging Architectures
Minneapolis, January 10-14, 2011

Acknowledgements:

work in Barba’s group done in collaboration with
Jaydeep Bardhan (Rush), Mathew Knepley (UChicago),
Tsuyoshi Hamada (Nagasaki Advanced Computing Center),
Rio Yokota (postdoc at BU) and graduate students
Felipe Cruz, Christopher Cooper, Anush Krishnan, Simon Layton

Acknowledgements:

work in Barba’s group done in collaboration with
Jaydeep Bardhan (Rush), Mathew Knepley (UChicago),
Tsuyoshi Hamada (Nagasaki Advanced Computing Center),
Rio Yokota (postdoc at BU) and graduate students
Felipe Cruz, Christopher Cooper, Anush Krishnan, Simon Layton

in Nagasaki Advanced Computing Center

“... the fundamental law of computer science
[is]: the faster the computer, the greater the
importance of speed of algorithms”

Trefethen & Bau “Numerical Linear Algebra” SIAM

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

O(N
3
)

O(N
2
)

The curious story of conjugate gradient (CG) algorithms

‣ Iterative methods:

‣ sequence of iterates
converging to the solution

‣ CG matrix iterations bring
the O(N3) cost to O(N2)

‣ 1950s — N too small for CG
to be competitive

‣ 1970s — renewed attention

Gauss ia
n e

l im
in

at io
n

CG i te ra t i ve m
ethods

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

O(N
3
)

O(N
2
)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

O(N
2
)

O(N
3
)

The curious story of conjugate gradient (CG) algorithms

‣ Iterative methods:

‣ sequence of iterates
converging to the solution

‣ CG matrix iterations bring
the O(N3) cost to O(N2)

‣ 1950s — N too small for CG
to be competitive

‣ 1970s — renewed attention

Gauss ia
n e

l im
in

at io
n

CG i te ra t i ve m
ethods

‣ 1946 — The Monte Carlo method.

‣ 1947 — Simplex Method for Linear Programming.

‣ 1950 — Krylov Subspace Iteration Method.

‣ 1951 — The Decompositional Approach to Matrix Computations.

‣ 1957 — The Fortran Compiler.

‣ 1959 — QR Algorithm for Computing Eigenvalues.

‣ 1962 — Quicksort Algorithms for Sorting.

‣ 1965 — Fast Fourier Transform.

‣ 1977 — Integer Relation Detection.

‣ 1987 — Fast Multipole Method Dongarra& Sullivan, IEEE Comput. Sci. Eng.,
Vol. 2(1):22-- 23 (2000)

‣ Solves N-body problems

๏ e.g. astrophysical gravity interactions

๏ reduces operation count from O(N2) to O(N)

Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N]

‣ Solves N-body problems

๏ e.g. astrophysical gravity interactions

๏ reduces operation count from O(N2) to O(N)

Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N]

‣ Solves N-body problems

๏ e.g. astrophysical gravity interactions

๏ reduces operation count from O(N2) to O(N)

Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N]

O(N) advantage

‣ Hierarchical methods:

‣ sequence of refinements
converging (or contributing)
to the solution

‣ FMM brings the O(N2) cost
to O(N)

‣ 1990s — MD codes dropped
FMM, as N too small to be
competitive

‣ Now — renewed attention
10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
4

10
6

10
8

10
10

10
12

O(N
2
)

O(N)

‣ space subdivision tree structure

‣ to find “near” and “far” bodies

‣ space subdivision tree structure

‣ to find “near” and “far” bodies

Flow of FMM calculation

M2M
multipole to multipole

treecode & FMM

M2L
multipole to local

FMM

L2L
local to local

FMM

L2P
local to particle

FMM

P2P
particle to particle

treecode & FMM

M2P
multipole to particle

treecode

source particles
target particles

information moves from red to blue

P2M
particle to multipole

treecode & FMM

‣ The whole algorithm in a sketch

Downward SweepUpward Sweep

Create Multipole Expansions. Evaluate Local Expansions.

P2M M2M M2L L2L L2P

‣ Contributions from Barba group:

‣ Parallelization strategy:

M2M and L2L translations M2L transformation Local domain

Level k

Root tree

Sub-tree 1 Sub-tree 2 Sub-tree 3 Sub-tree 4 Sub-tree 5 Sub-tree 6 Sub-tree 7 Sub-tree 8

‣ Graph representation:

cij
wi

wj

Ref. — F. A Cruz, M. G. Knepley, L. A. Barba,
PetFMM—A dynamically load-balancing parallel fast multipole library,
Int. J. Num. Meth. Eng., Vol. 85(4): 403–428 (Jan. 2011)

The algorithmic and hardware speed-ups properly multiply

GPU implementation of FMM kernels

GPU Gems, Volume IV

In press, to appear February 2011 (?)

Codes in http://code.google.com/p/gemsfmm/

http://code.google.com/p/gemsfmm/
http://code.google.com/p/gemsfmm/

GPU Gems, Volume III

FMM on GPU

10
3

10
4

10
5

10
6

10
7

10
!3

10
!2

10
!1

10
0

10
1

10
2

10
3

10
4

10
5

N

ti
m

e
 [

s
]

!

Direct (CPU)

Direct (GPU)

FMM (CPU)

FMM (GPU)

“Treecode and fast multipole method for N-body
simulation with CUDA”, chapter in GPU Gems IV, in press

FMM on GPU

10
3

10
4

10
5

10
6

10
7

10
!3

10
!2

10
!1

10
0

10
1

10
2

10
3

10
4

10
5

N

ti
m

e
 [

s
]

!

Direct (CPU)

Direct (GPU)

FMM (CPU)

FMM (GPU)

200x

“Treecode and fast multipole method for N-body
simulation with CUDA”, chapter in GPU Gems IV, in press

FMM on GPU

10
3

10
4

10
5

10
6

10
7

10
!3

10
!2

10
!1

10
0

10
1

10
2

10
3

10
4

10
5

N

ti
m

e
 [

s
]

!

Direct (CPU)

Direct (GPU)

FMM (CPU)

FMM (GPU)

40x

“Treecode and fast multipole method for N-body
simulation with CUDA”, chapter in GPU Gems IV, in press

FMM on GPU

10
3

10
4

10
5

10
6

10
7

10
!3

10
!2

10
!1

10
0

10
1

10
2

10
3

10
4

10
5

N

ti
m

e
 [

s
]

!

Direct (CPU)

Direct (GPU)

FMM (CPU)

FMM (GPU)

40x

“Treecode and fast multipole method for N-body
simulation with CUDA”, chapter in GPU Gems IV, in press

‣ the right methods and algorithms can provide
leaps in capability many times that of Moore’s law
would in a given period

‣ open source & open data enables tackling large,
complex computational projects

‣ the right methods and algorithms can provide
leaps in capability many times that of Moore’s law
would in a given period

‣ new hardware for HPC adds to the mix for a new
era of discovery via computation

‣ open source & open data enables tackling large,
complex computational projects

Parallel FMM on multi-GPUs

Strong Scaling:

parallel efficiency of
80% at 256, and
50% at 512 nodes

N=108

p=10

Degima cluster at
NACC, with
Infiniband comm

! " # $!% &" %# !"$ "'% '!"(

'(

!((

!'(

"((

"'(

&((

&'(

#((

)*+,-.

/01
234
3)
*+
,-
.35
.6

3

3

/+223-,7./+8-/0,7
1*0.279*"*
1*0.2791":
;";<2+72:
;"=<2+72:
="=<2+72:
="><2+72:
>"><2+72:
>";<2+72:

GPU breakdown

‣ N=108, on one node

!

"!

#!!

#"!

$!!

%&
'
()
*
+,
-.
/

,

,

(0++,%12.(0'%()12
*&).+23&$&
&).+23$4
5$56+02+4
5$76+02+4
7$76+02+4
7$86+02+4
8$86+02+4
8$56+02+4

!

"!

#!!

#"!

$!!

,

,

(0++,%12.(0'%()12
*&).+23&$&
&).+23$4
%9'26)2:,(;.6
<'==+0)2:,3;(;
%'3;>+(?+@)%+
%'3;7;441%
%'3;7+*%&A
%'3;B+02+4

Under revision for Comput. Phys. Comm.

See also http://barbagroup.bu.edu/

http://barbagroup.bu.edu/
http://barbagroup.bu.edu/

Suitability of the FMM for achieving
exascale

FMM is a particularly favorable algorithm for the emerging
heterogeneous, many-core architectural landscape.

Spatial and temporal locality

Spatial and temporal locality

‣ Algorithm has intrinsic geometric locality

Spatial and temporal locality

‣ Algorithm has intrinsic geometric locality

Spatial and temporal locality

‣ Algorithm has intrinsic geometric locality

‣ Acces patterns could be non-local

Spatial and temporal locality

‣ Algorithm has intrinsic geometric locality

‣ Acces patterns could be non-local

๏ work with sorted particle indices, access via a start-offset combination

Spatial and temporal locality

‣ Algorithm has intrinsic geometric locality

‣ Acces patterns could be non-local

๏ work with sorted particle indices, access via a start-offset combination

‣ Temporal locality:

Spatial and temporal locality

‣ Algorithm has intrinsic geometric locality

‣ Acces patterns could be non-local

๏ work with sorted particle indices, access via a start-offset combination

‣ Temporal locality:

๏ queue GPU tasks before execution, buffer the input and output of data
making memory access contiguous

Spatial and temporal locality

‣ Algorithm has intrinsic geometric locality

‣ Acces patterns could be non-local

๏ work with sorted particle indices, access via a start-offset combination

‣ Temporal locality:

๏ queue GPU tasks before execution, buffer the input and output of data
making memory access contiguous

➡ The FMM is not a locallity-sensitive application

Global data comunications and synchronization

‣ Two most time-consuming in the FMM:

๏ p2p — purely local

๏ m2l — exhibits “hierarchical synchronization”

P2P at the leaf level

L2P evaluation

M2M

M2L

L2L

Upward sweep Downward sweep

P2M

Load balancing

‣ FMM load-balanced

๏ space-filling curves: Morton, Hilbert

๏ work-only (no comm)

‣ PetFMM:

๏ graph-partitioning

๏ will it scale?

๏ hierarchical partition?

plan for an “ExaFMM”
1) our present FMM technology is state-of-the-art;
2) we possess the potential for a substantial performance hike

AND all our codes are always open!

Present FMM state-of-the-art

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

O(N)

N

ti
m

e
[s

]

published KIFMM code
Salmon&Warren treecode
our published FMM code

Single-node performance:

timings of published
kifmm code (2006) ,
S&W treecode (2000)
and our code

‣equal performance

‣same accuracy,
measured L2-norm
error 10-3

Single CPU core, Intel
Core i7 2.67 (no SSE)

New experimental FMM with higher performance

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

O(N)

N

ti
m

e
[s

]

Our published FMM
With new optimizations
With algorithmic improvements

Optimized code:

explicit inline assembly
within the p2p kernel,
implementing SIMD

‣ 5x speed-up,
single precision

Algorithmic
improvements:

i)hybridize FMM with
treecode

ii)dynamic error-control

‣ other recent work

In IEEE International Symposium on Parallel Distributed
Processing (IPDPS), IEEE, pp. 1–12 (Atlanta, GA; April 2010)

‣ PetFMM — open library, dynamic load balancing, comm minimizing

๏ open question: will strategy scale to 1000s procs? hierarchical partition?

‣ Performance on single node:

๏ matching other s.o.t.a. codes

‣ Algorithmic innovations:

๏ hybrid treecode/FMM

๏ variable order/variable box-opening for minimum work to achieve target
accuracy

Summary so far ...

But there is more ...

‣ Fault-tolerance:

๏ traditional checkpointing no longer adequate by itself

‣ instead: replicate threads, correctness checks on-the-fly

๏ FMM allows natural correctness checks at the time of selecting p

‣ Autotuning the FMM:

๏ natural: use tests/work estimats to select particles per box, p, and box-

opening parameters.

๏ parameter selection for load-balancing

